Effect of Preparation Parameter on Microstructure and Grain Refining Behavior of In Situ AlN-TiN-TiB2/Al Composite Inoculants on Pure Aluminum

نویسندگان

  • Qian Wang
  • Chunxiang Cui
  • Xin Wang
  • Lichen Zhao
  • Nuo Li
  • Shuiqing Liu
  • Hugo F. Lopez
چکیده

The formation of in situ AlN-TiN-TiB2/Al composite inoculants, which contain multi-phase refiner particles including AlN, TiN, TiB2, Al3Ti, and α-Al, was investigated using nitrogen gas injection. The effects of the main preparation parameters such as nitriding temperature, nitriding time, Ti content in melts, on the microstructure and grain refinement of in situ AlN-TiN-TiB2/Al composite inoculants were studied. The shape, content and size of different ceramic particles in the inoculants can be tuned by controlling the nitriding temperature and time, inducing excellent refining and reinforcing effects on pure aluminum. As a result, the average grain size of pure aluminum can be reduced to about 122 ± 22 μm from original 1010 ± 80 μm by adding 0.3 wt % inoculants. The mechanical properties including the tensile strength, yield strength and microhardness of the refined as-cast pure aluminum are also improved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure of spark plasma sintered TiB2 and TiB2–AlN ceramics

In this research study, the effects of aluminum nitride (AlN) additive on the densification behavior and microstructure development of titanium diboride (TiB2) based ceramic matrix composite were investigated. In this way, a monolithic TiB2 ceramic and a TiB2–5 wt% AlN ultrahigh temperature ceramic composite were fabricated by spark plasma sintering (SPS) proces...

متن کامل

Microstructure and Grain Refining Performance of a New Al-Ti-C Master Alloy (RESEARCH NOTE)

Control of microstructure parameters that affecting the Al-Ti-C master alloys grain refining efficiency is leading to improve the aluminum grain refinement. This study was an attempt to produce Al-Ti-C master alloys that provide these controlling factors with relying on the solute effect theory. The produced master alloys were examined by using scanning electron microscopy (SEM), energy-dispers...

متن کامل

Magnificent Grain Refinement of Al-Mg2Si Composite by Hot Rolling

The effect of chemical composition and the hot rolling operations on the microstructure and mechanical properties of in situ aluminum matrix composite with Mg2Si phase as the reinforcement was studied. It was revealed that the modification by phosphorous results in the rounder (more spherical) primary and secondary (eutectic) magnesium silicide intermetallics. During hot rolling, the primary pa...

متن کامل

PREPARATION OF NANO-STRUCTURAL Al2O3-TiB2 IN-SITU COMPOSITE USING MECHANICALLY ACTIVATED COMBUSTION SYNTHESIS FOLLOWED BYINTENSIVE MILLING

Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, ...

متن کامل

Effect of Material and Process Atmosphere in the Preparation of Al-Ti-B Grain Refiner by SHS

Al-Ti-B master alloys are widely used in the aluminum industry as grain refiners for the control of the microstructure of the aluminum alloys. The SHS (self-propagating high-temperature synthesis) is an ex situ method that uses exothermic reactions to sustain the chemical reaction in a combustion wave. The advantages of SHS are the low energy requirement, simplicity and product purity. However,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017